DSpace
 

Defence Technology Institute Repository >
เอกสารวิจัย >
ผลงานด้านการวิจัยและพัฒนานวัตกรรมและเทคโนโลยีป้องกันประเทศเพื่อนำไปสู่อุตสาหกรรมป้องกันประเทศ >

Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/2037

Title: Performance Comparison of Hybrid Methods on Facial Detection
Authors: Suksamran, Sittanon
Keywords: Haar features
AdaBoost
Cascade Classifiers
Principal Component Analysis
Linear Discriminant Analysis of Principal Components
Elastic Bunch Graph Matching
Hybrid method
Cascade
Eigenfaces
Fisherfaces
Gabor Wavelet
Gabor filter
Issue Date: 2016
Publisher: Defence Technology Institute
Series/Report no.: 59014;
Abstract: This paper surveys, reviews, and compares performance of facial detection using two hybrid methods: PCA+EBGM and PCA+LDA. The results of these hybrid methods provide data which gauges different performances. In PCA+LDA, linear combination for comparing and extracting classifier of data images into parts with input images and training images is used. In PCA+EBGM, the same linear method as was used with PCA+LDA—such as the incident light, the position of the face, and expression—cannot be used. Because PCA+EBGM using eyes alignment must be carefully considered, so that the method is highly accurate. Moreover, two points can be used for this method. However, this hybrid is faster, more precise, and will be more effective for greater amounts of data.
Description: บทความวิจัย
URI: http://hdl.handle.net/123456789/2037
Appears in Collections:ผลงานด้านการวิจัยและพัฒนานวัตกรรมและเทคโนโลยีป้องกันประเทศเพื่อนำไปสู่อุตสาหกรรมป้องกันประเทศ

Files in This Item:

File Description SizeFormat
59014I_abs.pdf171.72 kBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback