Defence Technology Institute Repository >
เอกสารวิจัย >
ผลงานด้านการวิจัยและพัฒนานวัตกรรมและเทคโนโลยีป้องกันประเทศเพื่อนำไปสู่อุตสาหกรรมป้องกันประเทศ >
Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/2037
|
Title: | Performance Comparison of Hybrid Methods on Facial Detection |
Authors: | Suksamran, Sittanon |
Keywords: | Haar features AdaBoost Cascade Classifiers Principal Component Analysis Linear Discriminant Analysis of Principal Components Elastic Bunch Graph Matching Hybrid method Cascade Eigenfaces Fisherfaces Gabor Wavelet Gabor filter |
Issue Date: | 2016 |
Publisher: | Defence Technology Institute |
Series/Report no.: | 59014; |
Abstract: | This paper surveys, reviews, and compares
performance of facial detection using two hybrid methods:
PCA+EBGM and PCA+LDA. The results of these hybrid
methods provide data which gauges different performances. In
PCA+LDA, linear combination for comparing and extracting
classifier of data images into parts with input images and
training images is used. In PCA+EBGM, the same linear method
as was used with PCA+LDA—such as the incident light, the
position of the face, and expression—cannot be used. Because
PCA+EBGM using eyes alignment must be carefully considered,
so that the method is highly accurate. Moreover, two points can
be used for this method. However, this hybrid is faster, more
precise, and will be more effective for greater amounts of data. |
Description: | บทความวิจัย |
URI: | http://hdl.handle.net/123456789/2037 |
Appears in Collections: | ผลงานด้านการวิจัยและพัฒนานวัตกรรมและเทคโนโลยีป้องกันประเทศเพื่อนำไปสู่อุตสาหกรรมป้องกันประเทศ
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|